Inducible nitric oxide synthase: role of the N-terminal beta-hairpin hook and pterin-binding segment in dimerization and tetrahydrobiopterin interaction.
نویسندگان
چکیده
The oxygenase domain of the inducible nitric oxide synthase (iNOSox; residues 1-498) is a dimer that binds heme, L-arginine and tetrahydrobiopterin (H(4)B) and is the site for nitric oxide synthesis. We examined an N-terminal segment that contains a beta-hairpin hook, a zinc ligation center and part of the H(4)B-binding site for its role in dimerization, catalysis, and H(4)B and substrate interactions. Deletion mutagenesis identified the minimum catalytic core and indicated that an intact N-terminal beta-hairpin hook is essential. Alanine screening mutagenesis of conserved residues in the hook revealed five positions (K82, N83, D92, T93 and H95) where native properties were perturbed. Mutants fell into two classes: (i) incorrigible mutants that disrupt side-chain hydrogen bonds and packing interactions with the iNOSox C-terminus (N83, D92 and H95) and cause permanent defects in homodimer formation, H(4)B binding and activity; and (ii) reformable mutants that destabilize interactions of the residue main chain (K82 and T93) with the C-terminus and cause similar defects that were reversible with high concentrations of H(4)B. Heterodimers comprised of a hook-defective iNOSox mutant subunit and a full-length iNOS subunit were active in almost all cases. This suggests a mechanism whereby N-terminal hooks exchange between subunits in solution to stabilize the dimer.
منابع مشابه
N-terminal domain swapping and metal ion binding in nitric oxide synthase dimerization.
Nitric oxide synthase oxygenase domains (NOS(ox)) must bind tetrahydrobiopterin and dimerize to be active. New crystallographic structures of inducible NOS(ox) reveal that conformational changes in a switch region (residues 103-111) preceding a pterin-binding segment exchange N-terminal beta-hairpin hooks between subunits of the dimer. N-terminal hooks interact primarily with their own subunits...
متن کاملInteraction between Neuronal Nitric-Oxide Synthase and Tetrahydrobiopterin Revisited: Studies on the Nature and Mechanism of Tight Pterin Binding
Recombinant neuronal nitric-oxide synthase (nNOS) expressed in baculovirus-infected Sf9 cells contains approximately 1 equiv of tightly bound tetrahydrobiopterin (BH4) per dimer and binds a second equivalent with a dissociation constant in the 10(-7)-10(-6) M range. Less is known about the pterin-binding properties of nNOS originating from expression systems such as Escherichia coli that do not...
متن کاملPterin interactions with distinct reductase activities of NO synthase.
Besides oxidizing L-arginine, neuronal NO synthase (NOS) NADPH-dependently reduces various electron acceptors, including cytochrome c and tetrazolium salts. The latter NADPH diaphorase reaction is used as a NOS-specific histochemical stain. Both reductase activities have been utilized to analyse electron transfer mechanisms within NOS. Basal L-arginine turnover by homodimeric NOS is enhanced by...
متن کاملCharacterization of key residues in the subdomain encoded by exons 8 and 9 of human inducible nitric oxide synthase: a critical role for Asp-280 in substrate binding and subunit interactions.
Human inducible nitric oxide synthase (iNOS) is active as a dimer of two identical subunits. Each subunit has an amino-terminal oxygenase domain that binds the substrate l-Arg and the cofactors heme and tetrahydrobiopterin and a carboxyl-terminal reductase domain that binds FMN, FAD, and NADPH. We previously demonstrated that a subdomain in the oxygenase domain encoded by exons 8 and 9 is impor...
متن کاملEffect of Neutrophils on Nitric Oxide Production from Stimulated Macrophages
Background: During the initial phase of an infection, there is an upregulation of inducible nitric oxide synthase in the macrophages for the production of nitric oxide. This is followed by the recruitment of polymorphonuclear leukocytes (neutrophils) which release arginase. Arginase competes with inducible nitric oxide synthase for a common substrate L-arginine. Objective: To investigate whethe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 18 22 شماره
صفحات -
تاریخ انتشار 1999